C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name : Group Theory

Subject Code : 5SC04GPE1		Branch: M.Sc. (Mathematics)	
Semester : 4	Date : 16/05/2016	Time : 02:30 To 05:30	Marks : 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Attempt the Following questions Q-1 (07)Show that the mapping $\psi: (\mathbb{R}_+; \cdot) \to (\mathbb{R}; +)$, where $\psi(x) = \log x$, $x \in \mathbb{R}_+$ is an (02)a. isomorphism. **b.** Express $(2\ 1\ 3\ 4\ 5\ 6)(1\ 7\ 2)$ of S_7 as composition of disjoint cycles. (02)Find only two non-isomorphic abelian groups of order 360. (02)c. **d.** Define: simple group. (01) Q-2 Attempt all questions (14)Let G be a group of order 108. Show that there exists a normal subgroup of (07)a. order 27 or 9. **b.** For a fixed element g of a given group G, if $i_a: G \to G$, where $i_a(x) = gxg^{-1}$, (07) $x \in G$, show that (*i*) $i_g \in Aut(G)$, (*ii*) Set $I(G) = \{i_g : g \in G\}$ is a normal subgroup of Aut(G). Q-2 Obtain Aut(G) when $G = V_4$ –Klein's Four group. (07)a. State and prove Cayley's theorem. (07) b. Attempt all questions (14)Q-3 If the order of a finite group G is divisible by a prime number p, show that G has (07) a.

an element of order p. **b.** Prove that each permutation $f \in S_n$ can be expressed as a composition of (07) disjoint cycles.

Page 1 || 2

Q-3	a. b.	Let <i>G</i> be a group, show that (<i>i</i>) The set of conjugate class of <i>G</i> is a partition of <i>G</i> . (<i>ii</i>) $ C(a) = [G:N(a)]$. (<i>iii</i>) If <i>G</i> is finite, $ G = \sum [G:N(a)]$, a running over exactly one element from each conjugate class. Show that for $n \ge 2$, the set A_n of even permutation in S_n is a subgroup of order	(07) (07)		
		$\frac{n!}{2}$.			
SECTION – II					
Q-4		Attempt the Following questions	(07)		
	a.	Is group of order 121 abelian? Justify your answer!	(02)		
	b.	Define: action of group G on a set X.	(02)		
	c.	Find the group of automorphisms of $(Z, +)$.	(02)		
	d.	Define: orbit of group.	(01)		
Q-5		Attempt all questions	(14)		
-	a.	Let G be a finite group, and let p be a prime. If p^m divides $ G $, then show that G	(07)		
	_	has a subgroup of order p^m .			
	b.	If a permutation $f \in S_n$ has t and s number of transpositions in two representations as composition of transpositions, then show that t and s are either both odd or both even.	(07)		
		OR			
Q-5	a.	Let G be a group of order pq , where p and q are prime numbers such that $p > q$ and $q \nmid (p-1)$, then show that G is cyclic.	(07)		
	b.	Show that the order of a permutation $f \in S_n$ is the least common multiple of the lengths of its disjoint cycles.	(07)		
0.6		Attornet all granting	(14)		
Q-0	a.	Define: permutation of a group. Show that for $n \ge 3$, each element in A_n can be	(14) (07)		
	h	expressed as a composition of three cycles. If C is a group with $Aut(C) = (L)$ then show that	(07)		
	D.	(i) G is computative I_{G} , then show that	(0)		
		(ii) $a^2 = a$ for each $a \in C$			
		$(u)u = v$ for each $u \in 0$.			
0-6	ล.	(i) Show that a group of order 1986 is not simple.	(07)		
X ·		(<i>ii</i>) If the order of a group is 42, then prove that its Sylow 7 – subgroup is normal	(07)		
	b.	Let G be a finite group, and let p be a prime, then prove that all Sylow p- subgroups of G are conjugate, and their number n_p divides $O(G)$ and satisfies $n_p \equiv 1 \pmod{p}$.	(07)		

Page 2 || 2

